A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule

نویسندگان

  • Mária Ercsey-Ravasz
  • Nikola T. Markov
  • Camille Lamy
  • David C. Van Essen
  • Kenneth Knoblauch
  • Zoltán Toroczkai
  • Henry Kennedy
چکیده

Recent advances in neuroscience have engendered interest in large-scale brain networks. Using a consistent database of cortico-cortical connectivity, generated from hemisphere-wide, retrograde tracing experiments in the macaque, we analyzed interareal weights and distances to reveal an important organizational principle of brain connectivity. Using appropriate graph theoretical measures, we show that although very dense (66%), the interareal network has strong structural specificity. Connection weights exhibit a heavy-tailed lognormal distribution spanning five orders of magnitude and conform to a distance rule reflecting exponential decay with interareal separation. A single-parameter random graph model based on this rule predicts numerous features of the cortical network: (1) the existence of a network core and the distribution of cliques, (2) global and local binary properties, (3) global and local weight-based communication efficiencies modeled as network conductance, and (4) overall wire-length minimization. These findings underscore the importance of distance and weight-based heterogeneity in cortical architecture and processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Applying Event-triggered Strategy on the Model Predictive Control

In this paper, the event-triggered strategy in the case of finite-horizon model predictive control (MPC) is studied and its advantages over the input to state stability (ISS) Lyapunov based triggering rule is discussed. In the MPC triggering rule, all the state trajectories in the receding horizon are considered to obtain the triggering rule. Clearly, the finite horizon MPC is sub-optimal with ...

متن کامل

Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors

Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...

متن کامل

Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors

Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...

متن کامل

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

A Predictive Structural Model of the Primate Connectome

Anatomical connectivity imposes strong constraints on brain function, but there is no general agreement about principles that govern its organization. Based on extensive quantitative data, we tested the power of three factors to predict connections of the primate cerebral cortex: architectonic similarity (structural model), spatial proximity (distance model) and thickness similarity (thickness ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2013